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17. Sorting and its 
complexity

Learning objectives:

• What is sorting? 

• basic ideas and intrinsic complexity

• insertion sort

• selection sort

• merge sort

• distribution sort

• a lower bound Ω(n· log  n)

• Quicksort

• Sorting in linear time?

• sorting networks

What is sorting? How difficult is it?

The problem

Assume that S is a set of n elements x1, x2, … , xn drawn from a domain X, on which a total order ≤ is defined (i.e.  

a relation that satisfies the following axioms):

≤ is reflexive (i.e ∀ ∀ x ∈  X:  x ≤ x)
≤ is antisymmetric (i.e ∀ ∀ x, y ∈  X:  x ≤ y  ∧   y ≤ x ⇒  x = y)

≤ is transitive (i.e ∀ ∀ x, y, z ∈  X:  x ≤ y  ∧   y ≤ z  ⇒   x ≤ z)

≤ is total (i.e. ∀ ∀ x, y ∈  X  ⇒  x ≤ y  ∨   y ≤ x)

Sorting is the process of generating a sequence 

such that (i1, i2, … , in) is a permutation of the integers from 1 to n and 

holds.  Phrased  abstractly,  sorting  is  the  problem  of  finding  a  specific  permutation  (or  one  among  a  few  

permutations,  when distinct  elements  may  have equal  values)  out  of  n!  possible  permutations  of  the n  given  

elements. Usually, the set S of elements to be sorted will be given in a data structure; in this case, the elements of S  

are ordered implicitly by this data structure, but not necessarily according to the desired order ≤. Typical sorting  

problems assume that S is given in an array or in a sequential file (magnetic tape), and the result is to be generated  

in the same structure. We characterize elements by their position in the structure (e.g. A[i] in the array A or by the 
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value of a pointer in a sequential file). The access operations provided by the underlying data structure determine  

what sorting algorithms are possible.

Algorithms

Most sorting algorithms are refinements of the following idea:

while ∃ (i, j):  i < j  ∧   A[i] > A[j]  do  A[i] :=: A[j];

where :=: denotes the exchange operator. Even sorting algorithms that do not explicitly exchange pairs of elements,  

or do not use an array as the underlying data structure, can usually be thought of as conforming to the schema 

above. An insertion sort, for example, takes one element at a time and inserts it in its proper place among those 

already sorted.  To find the correct place of insertion, we can think of a ripple effect whereby the new element 

successively displaces (exchanges position with) all those larger than itself.

As the schema above shows, two types of operations are needed in order to sort:

• collecting information about the order of the given elements

• ordering the elements (e.g. by exchanging a pair)

When designing an efficient algorithm we seek to economize the number of operations of both types: We try to  

avoid  collecting  redundant  information,  and  we  hope  to  move  an  element  as  few  times  as  possible.  The  

nondeterministic  algorithm  given  above  lets  us  perform  any  one  of  a  number  of  exchanges  at  a  given  time,  

regardless of their usefulness. For example, in sorting the sequence

x1 = 5, x2 = 2, x3 = 3, x4 = 4, x5 = 1

the nondeterministic algorithm permits any of seven exchanges

x1 :=: xi for 2 ≤ i ≤ 5  and  xj :=: x5 for 2 ≤ j ≤ 4.

We might have reached the state shown above by following an exotic sorting technique that sorts "from the 

middle toward both ends", and we might know at this time that the single exchange x 1 :=: x5 will complete the sort. 

The nondeterministic algorithm gives us no handle to express and use this knowledge.

The attempt to economize work forces us to depart from nondeterminacy and to impose a control structure that 

carefully sequences the operations to be performed so as to make maximal use of the information gained so far. The 

resulting algorithms will  be more complex  and difficult  to understand.  It  is  useful  to remember,  though,  that  

sorting is basically a simple problem with a simple solution and that all the acrobatics in this chapter are due to our  

quest for efficiency.

Intrinsic complexity

There are obvious limits to how much we can economize. In the absence of any previously acquired information,  

it is clear that each element must be inspected and, in general, moved at least once. Thus we cannot hope to get  

away with fewer than Ω(n) primitive operations. There are less obvious limits, we mention two of them here.

1. If  information is  collected  by asking binary questions only (any question that  may receive one of two  

answers (e.g. a yes/no question, or a comparison of two elements that yields either ≤ or >), then at least n · 

log2 n questions are necessary in general, as will be proved in the section "A lower bound Ωn · logn". Thus in 

this model of computation, sorting requires time Θ(n · log n).

2. In addition to collecting information, one must rearrange the elements. In the section "Permutation" in 

chapter 16,  we have shown that  in a permutation the average distance of an element from its  correct  
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position is approximately n/3. Therefore elements have to move an average distance of approximately n/3 

elements to end up at their destination.  Depending on the access operations of the underlying storage 

structure, an element can be moved to its correct position in a single step of average length n/3, or in n/3  

steps of average length 1. If elements are rearranged by exchanging adjacent elements only, then on average 

Θ(n2) moving operations are required. Therefore, short steps are insufficient to obtain an efficient Θ(n · log 

n) sorting algorithm.

Practical aspects of sorting

Records instead of elements. We discuss sorting assuming only that the elements to be sorted are drawn 

from a totally ordered domain. In practice these elements are just the keys of records that contain additional data  

associated with the key: for example,

type recordtype = record

key: keytype;  { totally ordered by ≤ }

data: anytype

end;

We use the relational operators =, <, ≤ to compare keys, but in a given programming language, say Pascal, these 

may be undefined on values of type keytype. In general, they must be replaced by procedures: for example, when 

comparing strings with respect to the lexicographic order.

If the key field is only a small part of a large record, the exchange operation :=:, interpreted literally, becomes an 

unnecessarily costly copy operation. This can be avoided by leaving the record (or just its data field) in place, and 

only moving a small surrogate record consisting of a key and a pointer to its associated record.

Sort generators. On many systems, particularly in the world of commercial data processing, you may never 

need to write a sorting program, even though sorting is a frequently executed operation. Sorting is taken care of by  

a sort generator, a program akin to a compiler; it selects a suitable sorting algorithm from its repertoire and tailors 

it to the problem at hand, depending on parameters such as the number of elements to be sorted, the resources  

available, the key type, or the length of the records.

Partially sorted sequences. The algorithms we discuss ignore any order that may exist in the sequence to be 

sorted. Many applications call for sorting files that are almost sorted, for example, the case where a sorted master 

file is updated with an unsorted transaction file. Some algorithms take advantage of any order present in the input 

data; their time complexity varies from O(n) for almost sorted files to O(n · log n) for randomly ordered files.

Types of sorting algorithms

Two important classes of incremental sorting algorithms create order by processing each element in turn and 

placing  it  in  its  correct  position.  These  classes,  insertion  sorts and  selection  sorts,  are  best  understood  as 

maintaining two disjoint, mutually exhaustive structures called 'sorted' and 'unsorted'.

Initialize: 'sorted' := Ø;  'unsorted' := {x1, x2, … , xn};

Loop: for i := 1 to n do

move an element from 'unsorted' to its correct place in 

'sorted';

The following illustrations show 'sorted'  and 'unsorted'  sharing  an  array[1  ..  n].  In  this  case  the boundary 

between 'sorted' and 'unsorted' is represented by an index i that increases as more elements become ordered. The  

important distinction between the two types of sorting algorithms emerges from the question: In which of the two  
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structures  is  most  of  the work done? Insertion  sorts  remove  the first  or  most  easily  accessible  element  from 

'unsorted' and search through 'sorted' to find its proper place. Selection sorts search through 'unsorted' to find the  

next element to be appended to 'sorted'.

Insertion sort

The i-th step inserts the i-th element into the sorted sequence of the first (i – 1) elements Exhibit 17.1).

Exhibit 17.1: Insertion sorts move an easily accessed element to its correct place.

Selection sort

The i-th step selects the smallest among the n – i + 1 elements not yet sorted, and moves it to the i-th position 

(Exhibit 17.2).

Exhibit 17.2: Selection sorts search for the correct element to move to an easily accessed place. 

Insertion and selection sorts repeatedly search through a large part of the entire data to find the proper place of  

insertion  or  the  proper  element  to  be  moved.  Efficient  search  requires  random  access,  hence  these  sorting 

techniques are used primarily for internal sorting in central memory.

Merge sort

Merge sorts process (sub)sequences of elements in unidirectional order and thus are well suited for  external 

sorting on secondary storage media that provide sequential access only, such as magnetic tapes; or random access 

to large blocks of data, such as disks. Merge sorts are also efficient for internal sorting. The basic idea is to merge  

two sorted sequences of elements, called runs, into one longer sorted sequence. We read each of the input runs, and 

write the output run, starting with small elements and ending with the large ones. We keep comparing the smallest  

of the remaining elements on each input run, and append the smaller of the two to the output run, until both input 

runs are exhausted (Exhibit 17.3).
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Exhibit 17.3: Merge sorts exploit order already present.

The processor shown at left in  Exhibit 17.4 reads two tapes, A and B. Tape A contains runs 1 and 2; tape B 

contains runs 3 and 4. The processor merges runs 1 and 3 into the single run 1 & 3 on tape C, and runs 2 and 4 into 

the single run 2 & 4 on tape D. In a second merge step, the processor shown at the right reads tapes C and D and  

merges the two runs 1 & 3 and 2 & 4 into one run, 1  &  3  &  2  & 4.

Exhibit 17.4: Two merge steps in sequence.

Distribution sort

Distribution  sorts  process  the  representation of  an  element  as  a  value in  a  radix  number  system and use 

primitive arithmetic operations such as "extract the k-th digit". These sorts do not compare elements directly. They  

introduce  a  different  model  of  computation  than  the  sorts  based  on  comparisons,  exchanges,  insertions,  and 

deletions that we have considered thus far. As an example, consider numbers with at most three digits in radix 4  

representation. In a first step these numbers are distributed among four queues according to their least significant  

digit, and the queues are concatenated in increasing order. The process is repeated for the middle digit, and finally 

for the leftmost, most significant digit, as shown in Exhibit 17.5
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Exhibit 17.5 Distribution sorts use the radix representation of keys to organize elements in buckets

We have now seen the basic ideas on which all sorting algorithms are built. It is more important to understand  

these ideas than to know dozens of algorithms based on them. To appreciate the intricacy of sorting, you must 

understand some algorithms in detail: we begin with simple ones that turn out to be inefficient.

Simple sorting algorithms that work in time Θ(n2)

If you invent your own sorting technique without prior study of the literature, you will probably "discover" a 

well-known inefficient algorithm that works in time O(n2), requires time Θ(n2) in the worst case, and thus is of time 

complexity Ω(n2). Your algorithm might be similar to one described below.

Consider in-place algorithms that work on an array declared as

var  A: array[1 .. n] of elt;

and place the elements in ascending order. Assume that the comparison operators are defined on values of type elt. 

Let cbest, caverage, and cworst denote the number of comparisons, and ebest, eaverage, and eworst the number of exchange

operations performed in the best, average, and worst case, respectively. Let invaverage denote the average number of 

inversions in a permutation.

Insertion sort (Exhibit 17.6)

Let –∞ denote a constant ≤ any key value. The smallest value in the domain often serves as a sentinel –∞.
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Exhibit 17.6: Straight insertion propagates a ripple-effect across the sorted part of the array.

A[0] := –∞;

for i := 2 to n do  begin

j := i;

while  A[j] < A[j – 1]  do  { A[j] :=: A[j – 1]; { exchange } 

j := j – 1 }

end;

This straight insertion sort is an Θ(n) algorithm in the best case and an Θ(n2) algorithm in the average and worst 

cases. In the program above, the point of insertion is found by a linear search interleaved with exchanges. A binary  

search is  possible  but  does not  improve the time complexity  in  the average and worst  cases,  since the actual  

insertion still requires a linear-time ripple of exchanges.

Selection sort (Exhibit 17.7)

Exhibit 17.7: Straight selection scans the unsorted part of the array.

for i := 1 to n – 1 do  begin

minindex := i;  minkey := A[i];

for j := i + 1 to n do

if  A[j] < minkey  then  { minkey := A[j];  minindex := j }

A[i] :=: A[minindex]  { exchange }

end;
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The sum in the formula for the number of comparisons reflects the structure of the two nested for loops. The  

body of the inner loop is executed the same number of times for each of the three cases. Thus this straight selection 

sort is of time complexity Θ(n2).

A lower bound Ω(n · log n)

A straightforward counting argument yields a lower bound on the time complexity of any sorting algorithm that  

collects information about the ordering of the elements by asking only binary questions. A binary question has a 

two-valued answer: yes or no, true or false. A comparison of two elements, x ≤ y, is the most obvious example, but  

the following theorem holds for binary questions in general.

Theorem:  Any sorting algorithm that collects information by asking binary questions only executes at least 

binary questions both in the worst case, and averaged over all n! permutations. Thus the average and worst-case 

time complexity of such an algorithm is Ω(n · log n).

Proof: A sorting algorithm of the type considered here can be represented by a  binary decision tree.  Each 

internal node in such a tree represents a binary question, and each leaf corresponds to a result of the decision 

process. The decision tree must distinguish each of the n! possible permutations of the input data from all the  

others; and thus must have at least n! leaves, one for each permutation.

Example: The decision tree shown in Exhibit 17.8 collects the information necessary to sort three elements, x, y 

and z, by comparisons between two elements.

Exhibit 17.8 The decision tree shows the possible n! Outcomes when sorting n elements.
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The average number of binary questions needed by a sorting algorithm is equal to the average depth of the  

leaves of this decision tree. The lemma following this theorem will show that in a binary tree with k leaves the  

average depth of the leaves is at least log2k. Therefore, the average depth of the leaves corresponding to the n! 

permutations is at least log2n!. Since 

it follows that on average at least 

n∗log
2
n1−

n

ln
2

binary questions are needed, that is, the time complexity of each such sorting algorithm is  Ω(n · log n) in the 

average, and therefore also in the worst case.

Lemma: In a binary tree with k leaves the average depth of the leaves is at least log2k.

Proof: Suppose that the lemma is not true, and let T be the counterexample with the smallest number of nodes. 

T cannot consist of a single node because the lemma is true for such a tree. If the root r of T has only one child, the  

subtree T' rooted at this child would contain the k leaves of T that have an even smaller average depth in T' than in  

T. Since T was the counterexample with the smallest number of nodes, such a T' cannot exist. Therefore, the root r  

of T must have two children, and there must be kL > 0 leaves in the left subtree and kR > 0 leaves in the right subtree 

of r (kL + kR = k). Since T was chosen minimal, the kL leaves in the left subtree must have an average depth of at least 

log2 kL, and the kR leaves in the right subtree must have an average depth of at least log2 kR. Therefore, the average 

depth of all k leaves in T must be at least 

It is easy to see that (∗ ) assumes its minimum value if kL = kR. Since (∗) has the value log2 k if kL = kR = k / 2 we have 

found a contradiction to our assumption that the lemma is false.

Quicksort

Quicksort  (C.  A.  R.  Hoare,  1962)  [Hoa  62]  combines  the  powerful  algorithmic  principle  of  divide-and-

conquer  with an efficient way of moving elements using few exchanges. The divide phase partitions the array into 

two disjoint parts: the "small" elements on the left and the "large" elements on the right. The conquer phase sorts 

each part separately. Thanks to the work of the divide phase, the merge phase requires no work at all to combine 

two partial solutions. Quicksort's efficiency depends crucially on the expectation that the divide phase cuts two  

sizable subarrays rather than merely slicing off an element at either end of the array (Exhibit 17.9).
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Exhibit 17.9: Quicksort partitions the array into the "small" elements on the left and the "large" elements 

on the right.

We chose an arbitrary threshold value m to define "small" as ≤ m, and "large" as ≥ m, thus ensuring that any 

"small element" ≤ any "large element". We partition an arbitrary subarray A[L .. R] to be sorted by executing a left-

to-right scan (incrementing an index i) "concurrently" with a right-to-left scan (decrementing j) (Exhibit 17.10). The 

left-to-right scan pauses at the first element A[i] ≥ m, and the right-to-left scan pauses at the first element A[j] ≤ m. 

When both scans have paused, we exchange A[i] and A[j] and resume the scans. The partition is complete when the 

two scans have crossed over with j < i. Thereafter, quicksort is called recursively for A[L .. j] and A[i .. R], unless one  

or both of these subarrays consists of a single element and thus is trivially sorted. Example of partitioning (m = 16):

 25 23 3 16 4 7 29 6

 i j

 6 23 3 16 4 7 29 25

 i j

 6 7 3 16 4 23 29 25

 i j

 6 7 3 4 16 23 29 25

j  i

Exhibit 17.10: Scanning the array concurrently from left to right and from right to left.

Although the threshold value m appeared arbitrary in the description above, it must meet criteria of correctness 

and efficiency. Correctness: if either the set of elements ≤ m or the set of elements ≥ m is empty, quicksort fails to 

terminate. Thus we require that min(xi) ≤ m ≤ max(xi). Efficiency requires that m be close to the median.

How do we find the median of n elements? The obvious answer is to sort the elements and pick the middle one,  

but  this  leads  to  a  chicken-and-egg  problem  when  trying  to  sort  in  the  first  place.  There  exist  sophisticated 

algorithms  that  determine  the  exact  median  of  n  elements  in  time  O(n)  in  the  worst  case  [BFPRT  72].  The  

multiplicative constant might be large, but from a theoretical point of view this does not matter. The elements are  

partitioned into two equal-sized halves, and quicksort runs in time O(n · log n) even in the worst case. From a 

practical point of view, however, it is not worthwhile to spend much effort in finding the exact median when there 

are much cheaper ways of finding an acceptable approximation. The following techniques have all been used to pick  

a threshold m as a "guess at the median":

• An array element in a fixed position such as A[(L + R) div 2]. Warning: stay away from either end, A[L] or 

A[R], as these thresholds lead to poor performance if the elements are partially sorted.

• An array element in a random position: a simple technique that yields good results.

• The median of three or five array elements in fixed or random positions.
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• The average between the smallest and largest element. This requires a separate scan of the entire array in  

the beginning; thereafter, the average for each subarray can be calculated during the previous partitioning  

process.

The recursive procedure 'rqs' is a possible implementation of quicksort. The function 'guessmedian' must yield a 

threshold that lies on or between the smallest and largest of the elements to be sorted. If an array element is used as 

the threshold, the procedure 'rqs' should be changed in such a way that after finishing the partitioning process this 

element is in its final position between the left and right parts of the array.

procedure rqs (L, R: 1 .. n);  { sorts A[L], … , A[R] }

var  i, j: 0 .. n + 1;

procedure partition;

var  m: elt;

begin  { partition }

m := guessmedian (L, R);

{ min(A[L], … , A[R]) ≤ m ≤ max(A[L], … , A[R]) }

i := L;  j := R;

repeat

{ A[L], … , A[i – 1] ≤ m ≤ A[j + 1], … , A[R] }

while  A[i] < m  do  i := i + 1;

{ A[L], … , A[i – 1] ≤ m ≤ A[i] }

while  m < A[j]  do  j := j – 1;

{ A[j] ≤ m ≤ A[j + 1], … , A[R] }

if  i ≤ j  then  begin

A[i] :=: A[j];  { exchange }

{ i ≤ j ⇒  A[i] ≤ m ≤ A[j] }

i := i + 1;  j := j – 1

{ A[L], … , A[i – 1] ≤ m ≤ A[j + 1], … , A[R] }

end

else

{ i > j ⇒  i = j + 1 ⇒  exit }

end

until  i > j

end;  { partition }

begin  { rqs }

partition;

if L < j then  rqs(L, j);

if i < R then  rqs(i, R)

end;  { rqs }

An initial call 'rqs(1, n)' with n > 1 guarantees that L < R holds for each recursive call.

An iterative implementation of quicksort is given by the following procedure, 'iqs', which sorts the whole array  

A[1 .. n]. The boundaries of the subarrays to be sorted are maintained on a stack.

procedure iqs;

const  stacklength = … ;

type  stackelement = record  L, R: 1 .. n  end;

var i, j, L, R, s: 0 .. n;

stack: array[1 .. stacklength] of stackelement;

procedure partition;  { same as in rqs }

end;  { partition }

begin  { iqs }

s := 1;  stack[1].L := 1;  stack[1].R := n;

repeat

L := stack[s].L;  R := stack[s].R;  s := s – 1;
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repeat

partition;

if  j – L < R – i  then  begin

if  i <  R then  { s := s + 1;  stack[s].L := i; 

stack[s].R := R };

R := j

end

else  begin

if  L < j  then  { s := s + 1;  stack[s].L := L; 

stack[s].R := j };

L := i

end

until  L ≥ R

until  s = 0

end;  { iqs }

After partitioning, 'iqs' pushes the bounds of the larger part onto the stack, thus making sure that part will be  

sorted later, and sorts the smaller part first. Thus the length of the stack is bounded by log2n.

For very small  arrays,  the overhead of  managing a  stack  makes quicksort  less efficient  than simpler  O(n 2) 

algorithms, such as an insertion sort. A practically efficient implementation of quicksort might switch to another  

sorting technique for subarrays of size up to 10 or 20. [Sed 78] is a comprehensive discussion of how to optimize  

quicksort.

Analysis for three cases: best, "typical", and worst

Consider a quicksort algorithm that chooses a guessed median that differs from any of the elements to be sorted  

and thus partitions the array into two parts, one with k elements, the other with n – k elements. The work q(n)  

required to sort n elements satisfies the recurrence relation

The constant b measures the cost of calling quicksort for the array to be sorted. The term a · n covers the cost of 

partitioning, and the terms q(k) and q(n – k) correspond to the work involved in quicksorting the two subarrays.  

Most quicksort algorithms partition the array into three parts: the "small" left part, the single array element used to  

guess the median, and the "large" right part. Their work is expressed by the equation

We analyze  equation  (*);  it  is  close  enough to  the second equation to have the same asymptotic  solution. 

Quicksort's behavior in the best and worst cases are easy to analyze, but the average over all permutations is not.  

Therefore, we analyze another average which we call the typical case.

Quicksort's  best-case behavior is  obtained if  we guess the correct median that partitions the array into two 

equal-sized  subarrays.  For  simplicity's  sake the following calculation assumes that  n is  a power  of  2,  but this 

assumption does not affect the solution. Then (*) can be rewritten as

We use this recurrence equation to calculate
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and substitute on the right-hand side to obtain 

Repeated substitution yields

The constant q(1), which measures quicksort's work on a trivially sorted array of length 1, and b, the cost of a  

single procedure call, do not affect the dominant term n · log2n. The constant factor a in the dominant term can be 

estimated by analyzing the code of the procedure 'partition'. When these details do not matter,  we summarize:  

Quicksort's time complexity in the best case is Θ(n · log n).

Quicksort's  worst-case  behavior occurs when one of the two subarrays consists of a single element after each 

partitioning. In this case equation (∗) becomes

We use this recurrence equation to calculate 

and substitute on the right-hand side to obtain 

Repeated substitution yields 

Therefore the time complexity of quicksort in the worst case is Θ(n2).

For the analysis of quicksort's typical behavior we make the plausible assumption that the array is equally likely 

to get partitioned between any two of its elements: For all k, 1 ≤ k < n, the probability that the array A is partitioned  

into the subarrays A[1 .. k] and A[k + 1 .. n] is 1 / (n – 1). Then the average work to be performed by quicksort is 

expressed by the recurrence relation
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This recurrence relation approximates the recurrence relation discussed in chapter 16 well enough to have the 

same solution

Since ln 4 ≈ 1.386, quicksort's asymptotic behavior in the typical case is only about 40% worse than in the best  

case, and remains in Θ(n · log n). [Sed 77] is a thorough analysis of quicksort.

Merging and merge sorts

The internal sorting algorithms presented so far require direct access to each element. This is reflected in our 

analyses by treating an array access A[i], or each exchange A[i] :=: A[j], as a primitive operation whose cost is  

constant (independent of n). This assumption is not valid for elements stored on secondary storage devices such as  

magnetic tapes or disks. A better assumption that mirrors the realities of external sorting is that the elements to be 

sorted are stored as a sequential file f. The file is accessed through a file pointer which, at any given time, provides  

direct access to a single element. Accessing other elements requires repositioning of the file pointer. Sequential files 

may permit the pointer to advance in one direction only, as in the case of Pascal files, or to move backward and  

forward.  In  either  case,  our  theoretical  model  assumes that  the time required  for  repositioning the pointer  is  

proportional  to  the  distance  traveled.  This  assumption  obviously  favors  algorithms  that  process  (compare, 

exchange) pairs of adjacent elements, and penalizes algorithms such as quicksort that access elements in random 

positions.

The following external sorting algorithm is  based on the merge sort principle.  To make optimal  use of  the  

available main memory, the algorithm first creates initial runs; a run is a sorted subsequence of elements fi, fi+1, … , 

fj stored consecutively in file f, fk ≤ fk+1 for all k with i ≤ k ≤ j – 1. Assume that a buffer of capacity m elements is 

available in main memory to create initial runs of length m (perhaps less for the last run). In processing the r-th 

run, r = 0, 1, … , we read the m elements fr·m+1, fr·m+2, … , fr·m+m into memory, sort them internally, and write the sorted 

sequence to a modified file f, which may or may not reside in the same physical storage area as the original file f.  

This new file f is partially sorted into runs: fk ≤ fk+1 for all k with r · m + 1 ≤ k < r · m + m.

At this point we need two files, g and h, in addition to the file f, which contai ns the initial runs. In a copy phase 

we distribute the initial runs by copying half of them to g, the other half to h. In the subsequent merge phase each 

run of g is merged with exactly one run of h, and the resulting new run of double length is written onto f ( Exhibit 

17.11). After the first cycle, consisting of a copy phase followed by a merge phase, f contains half as many runs as it  

did before. After  log2(n / m)  cycles f contains one single run, which is the sorted sequence of all elements.
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Exhibit 17.11: Each copy-merge cycle halves the number of runs and doubles their lengths. 

Exercise: a merge sort in main memory

Consider the following procedure that sorts the array A:

const  n = … ;

var  A: array[1 .. n] of integer;

…

procedure sort (L, R: 1 .. n);

var  m: 1 .. n;

procedure combine;

var B: array [1 .. n] of integer;

i, j, k: 1 .. n;

begin  { combine }

i := L;  j := m + 1;

for k := L to R do

if  (i > m) cor ((j ≤ R) cand (A[j] < A[i]))  then

{ B[k] := A[j];  j := j + 1 }

else

{ B[k] := A[i];  i := i + 1 } ;

for k := L to R do  A[k] := B[k]

end;  { combine }

begin  { sort}

if  L < R  then

{ m := (L + R) div 2;  sort(L, m);  sort(m + 1, R);  combine }

end;  { sort }

The relational operators 'cand' and 'cor' are conditional! The procedure is initially called by

sort(1,n); 

(a) Draw a picture to show how 'sort' works on an array of eight elements.

(b) Write down a recurrence relation to describe the work done in sorting n elements.

(c) Determine the asymptotic time complexity by solving this recurrence relation.

(d) Assume that 'sort' is called for m subarrays of equal size, not just for two. How does the asymptotic time  

complexity change?

Solution

(a) 'sort' depends on the algorithmic principle of divide and conquer. After dividing an array into a left and a 

right subarray whose numbers of elements differ by at most one, 'sort' calls itself recursively on these two  

subarrays. After these two calls are finished, the procedure 'combine'  merges the two sorted subarrays 

A[L .. m] and A[m + 1 .. R] together in B. Finally, B is copied to A. An example is shown in Exhibit 17.12.
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Exhibit 17.12: Sorting an array by using a divide-and-conquer scheme.

(b) The work w(n) performed while sorting n elements satisfies

The first term describes the cost of the two recursive calls of 'sort', the term a · n is the cost of merging the  

two sorted subarrays, and the constant b is the cost of calling 'sort' for the array.

(c) If

is substituted in (*∗), we obtain 

Continuing this substitution process results in 
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since w(1) is constant the time complexity of 'sort' is Θ(n · log n).

(d) If 'sort' is called recursively for m subarrays of equal size, the cost w'(n) is

solving this recursive equation shows that the time complexity does not change [i.e. it is Θ(n · log n)].

Is it possible to sort in linear time?

The lower bound Ω(n · log n) has been derived for sorting algorithms that gather information about the ordering 

of the elements by binary questions and nothing else. This lower bound need not apply in other situations.

Example 1: sorting a permutation of the integers from 1 to n

If we know that the elements to be sorted are a permutation of the integers 1 .. n, it is possible to sort in time 

Θ(n) by storing element i in the array element with index i.

Example 2: sorting elements from a finite domain

Assume that the elements to be sorted are samples from a finite domain W = 1 .. w. Then it is possible to sort in  

time Θ(n) if gaps between the elements are allowed (Exhibit 17.13). The gaps can be closed in time Θ(w).

Exhibit 17.13: Sorting elements from a finite domain in linear time.

Do these examples contradict the lower bound  Ω(n  · log n)? No, because in these examples the information 

about the ordering of elements is obtained by asking questions more powerful than binary questions: namely, n-

valued questions in Example 1 and w-valued questions in Example 2.

A  k-valued  question  is  equivalent  to  log2k  binary  questions.  When  this  "exchange  rate"  is  taken  into 

consideration, the theoretical time complexities of the two sorting techniques above are Θ(n · log n) and Θ(n · log 

w), respectively, thus conforming to the lower bound in the section "A lower bound Ω(n · log n)".

Sorting algorithms that sort in linear time (expected linear time, but not in the worst case) are described in the  

literature under the terms bucket sort, distribution sort, and radix sort.

Sorting networks

The sorting algorithms above are designed to run on a sequential machine in which all operations, such as  

comparisons and exchanges, are performed one at a time with a single processor. If algorithms are to be efficient,  

they need to be rethought when the ground rules for their execution change: when the theoretician uses another 

model of computation, or when they are executed on a computer with a different architecture. This is particularly 

true of the many different types of multiprocessor architectures that have been built or conceived. When many  

processors  are  available  to share the workload,  questions  of  how to distribute  the work among them, how to 

synchronize their operation, and how to transport data, prevail. It is not our intention to discuss sorting on general-

purpose parallel machines. We wish to illustrate the point that algorithms must be redesigned when the model of  
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computation changes. For this purpose a discussion of special-purpose sorting networks suffices. The "processors"  

in a sorting network are merely comparators: Their only function is to compare the values on two input wires and 

switch them onto two output wires such that the smaller is on top, the larger at the bottom (Exhibit 17.14).

Exhibit 17.14: Building block of sorting networks.

Comparators are arranged into a network in which n wires enter at the left and n wires exit at the right, as  

Exhibit 17.15 shows, where each vertical connection joining a pair of wires represents a comparator. The illustration  

also shows what happens to four input elements, chosen to be 4, 1, 3, 2 in this example, as they travel from left to  

right through the network.

Exhibit 17.15: A comparator network that fails to sort. The output of each 

comparator performing an exchange is shown in the ovals.

A network of  comparators  is  a  sorting network if  it  sorts every  input configuration.  We consider an input 

configuration to consist of distinct elements, so that without loss of generality we may regard it as one of the n!  

permutations of the sequence (1,  2,  … ,  n). A network that sorts a duplicate-free configuration will  also sort a  

configuration containing duplicates.

The comparator network above correctly sorts many of  its  4!  = 24 input configurations,  but it  fails  on the  

sequence (4, 1, 3, 2). Hence it is not a sorting network. It is evident that a network with a sufficient number of  

comparators in the right places will sort correctly, but as the example above shows, it is not immediately evident 

what  number suffices or how the comparators should be placed.  The network in  Exhibit  17.16 shows that five 

comparators, arranged judiciously, suffice to sort four elements.

Exhibit 17.16: Five comparators suffice to sort four elements.

How can we tell if a given network sorts successfully? Exhaustive testing is feasible for small networks such as 

the one above, where we can trace the flow of all 4! = 24 input configurations. Networks with a regular structure 
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usually admit a simpler correctness proof. For this example, we observe that c1, c2, and c3 place the smallest element 

on the top wire. Similarly, c1, c2, and c4 place the largest on the bottom wire. This leaves the middle two elements on 

the middle two wires, which c5 then puts into place.

What  design  principles  might  lead  us  to  create  large  sorting  networks  guaranteed  to  be  correct?  Sorting  

algorithms  designed  for  a  sequential  machine  cannot,  in  general,  be  mapped  directly  into  network  notation, 

because the network is a more restricted model of computation: Whereas most sequential sorting algorithms make 

comparisons based on the outcome of previous comparisons, a sorting network makes the same comparisons for all 

input  configurations.  The  same  fundamental  algorithm  design  principles  useful  when  designing  sequential  

algorithms also apply to parallel algorithms.

Divide-and-conquer. Place two sorting networks for n wires next to each other, and combine them into a sorting 

network for 2 · n wires by appending a merge network to merge their outputs. In sequential computation merging 

is simple because we can choose the most useful comparison depending on the outcome of previous comparisons.  

The rigid structure of comparator networks makes merging networks harder to design.

Incremental algorithm.We place an n-th wire next to a sorting network with n – 1 wires, and either precede or 

follow the network by a "ladder" of comparators that tie the extra wire into the existing network, as shown in the  

following figures. This leads to designs that mirror the straight insertion and selection algorithms  in the section 

"Simple sorting algorithms that work in time Θ(n2)

Insertion sort. With the top n – 1 elements sorted, the element on the bottom wire trickles into its correct place.  

Induction yields the expanded diagram on the right in Exhibit 17.17.

Exhibit 17.17: Insertion sort leads by induction to the sorting network on the right.

Selection sort. The maximum element first trickles down to the bottom, then the remaining elements are sorted. 

The expanded diagram is on the right in Exhibit 17.18.

Exhibit 17.18: Selection sort leads by induction to the sorting network on the right.

Comparators can be shifted along their pair of wires so as to reduce the number of stages, provided that the  

topology of the network remains unchanged. This compression reduces both insertion and selection sort to the  

triangular network shown in  Exhibit 17.19. Thus we see that the distinction between insertion and selection was 

more a distinction of sequential order of operations rather than one of data flow.
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Exhibit 17.19: Shifting comparators reduces the number of stages.

Any number of  comparators  that  are  aligned vertically require  only  a  single  unit  of  time.  The compressed 

triangular network has O(n2) comparators, but its time complexity is 2 · n – 1  ∈ O(n). There are networks with 

better asymptotic behavior, but they are rather exotic [Knu 73b].

Exercises and programming projects

1. Implement insertion sort, selection sort, merge sort, and quicksort and animate the sorting process for each  

of  these  algorithms:  for  example,  as  shown in  the  snapshots  in  “Algorithm animation”.  Compare  the 

number  of  comparisons  and  exchange  operations  needed  by  the  algorithms  for  different  input 

configurations.

2. What is the smallest possible depth of a leaf in a decision tree for a sorting algorithm?

3. Show that 2 · n – 1 comparisons are necessary in the worst case to merge two sorted arrays containing n  

elements each.

4. The most obvious method of systematically interchanging the out-of-order pairs of elements in an array

var  A: array[1 .. n] of elt;

is to scan adjacent pairs of elements from bottom to top (imagine that the array is drawn vertically, with 

A[1] at the top and A[n] at the bottom) repeatedly, interchanging those found out of order:

for  i := 1  to  n – 1  do

 for  j := n  downto  i + 1  do

if  A[j – 1] > A[j]  then  A[j – 1] :=: A[j];

This technique is known as bubble sort, since smaller elements "bubble up" to the top.

(a) Explain by words,  figures,  and an example how bubble sort works.  Show that this  algorithm sorts 

correctly.

(b) Determine the exact number of comparisons and exchange operations that are performed by bubble 

sort in the best, average, and worst case.

(c) What is the worst-case time complexity of this algorithm?

5. A sorting algorithm is called stable if it preserves the original order of equal elements. Which of the sorting 

algorithms discussed in this chapter is stable?

6. Assume that quicksort chooses the threshold m as the first element of the sequence to be sorted. Show that 

the running time of such a quicksort algorithm is Θ(n2) when the input array is sorted in nonincreasing or 

nondecreasing order.

7. Find a worst-case input configuration for a quicksort algorithm that chooses the threshold m as the median 

of the first, middle, and last elements of the sequence to be sorted.

8. Array A contains m and array B contains n different integers which are not necessarily ordered:

const m = … ;  { length of array A }

n = … ;  { length of array B }

var A: array[1 .. m] of integer;

B: array[1 .. n] of integer;
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A duplicate is an integer that is contained in both A and B. Problem: How many duplicates are there in A 

and B?

(a) Determine the time complexity of the brute-force algorithm that compares each integer contained in 

one array to all integers in the other array.

(b) Write a more efficient

function duplicates: integer;

Your solution may rearrange the integers in the arrays.

(c) What is the worst-case time complexity of your improved algorithm?
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